Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430UE0-1

III II III III III III IIIIIIIIIIII Z22-3430UE0-1

FRIDAY, 27 MAY 2022 - MORNING

SCIENCE (Double Award)

Unit 5 – CHEMISTRY 2 HIGHER TIER

1 hour 15 minutes

For Exa	aminer's us	e only			
Question	Maximum Mark	Mark Awarded			
1.	7				
2.	8				
3.	9				
4.	15				
5.	8				
6.	6				
7.	7				
Total	60				

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

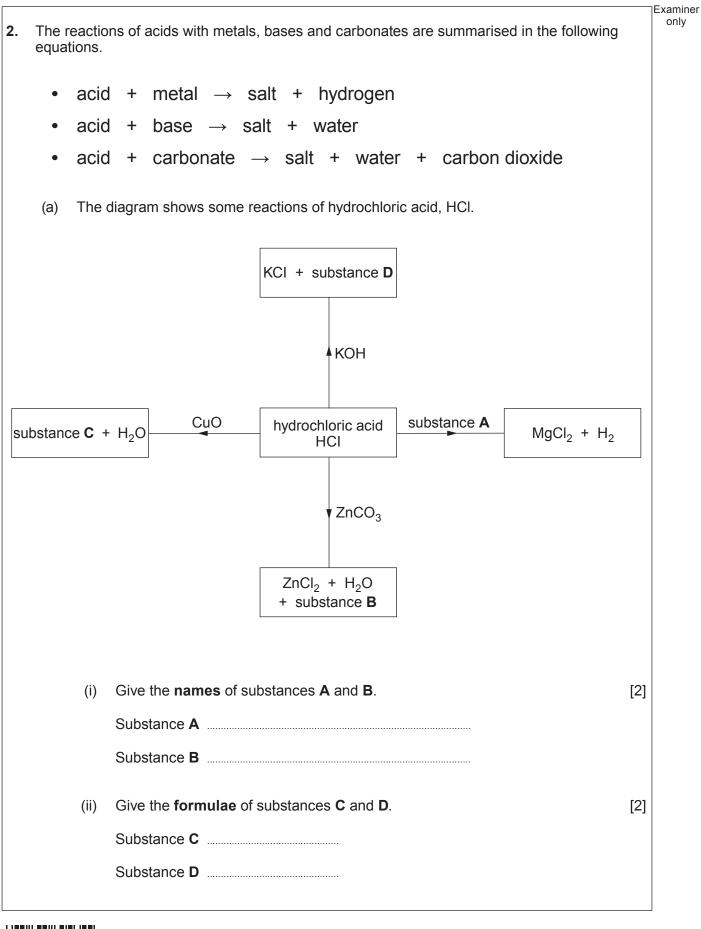
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

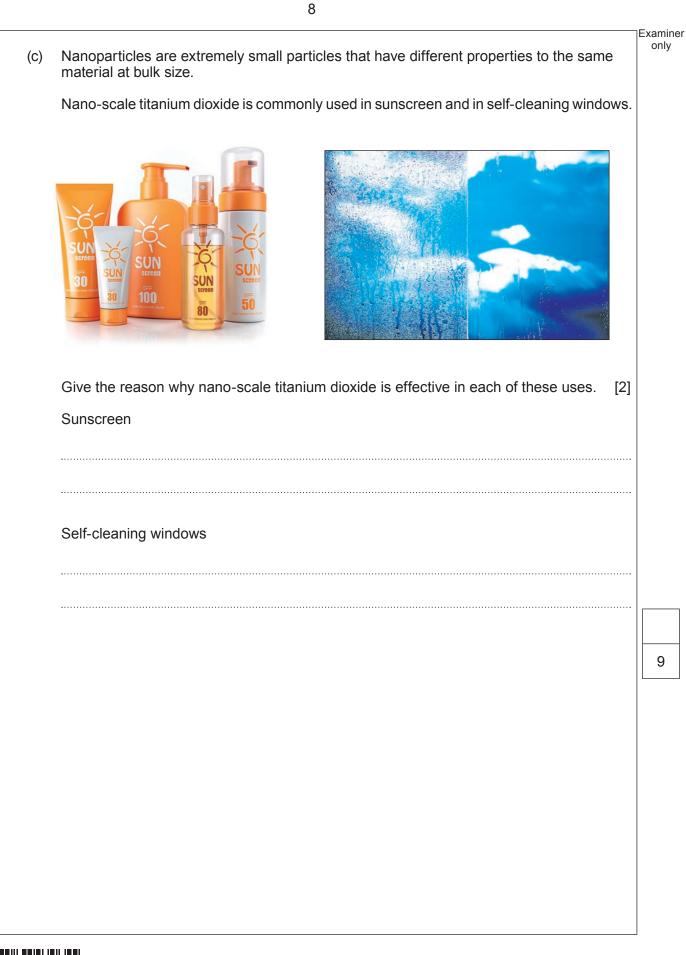
The number of marks is given in brackets at the end of each question or part-question.

Question **7**(a) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.


			Answer all quest	tions.	
Poly	ymer ç	jels are comr	nonly used in disposable na		
			actures disposable nappies he polymer gel in their nappi	was investigating the effect of es is able to absorb.	f temperature
(a)			ected using water at 40 °C are d was 0.035 g.	e given below. The initial mas	s of the
		Time (hours)	Mass of bead (g)	Mass of water absorbed by bead (g) (to 1 decimal place)	
		0	0.035	0.0	
		2	4.048	4.0	
		4	6.030	6.0	
		6	7.280	7.2	
		8	7.891	7.9	
		10	8.181	8.1	
		12	8.181	8.1	
	(i)	equation. per Calculate t	rcentage increase = $\frac{\text{mass of}}{\text{initial}}$	of the bead is calculated using $\frac{f \text{ water absorbed}}{mass of bead} \times 100$ he mass of the bead after 2 he number.	
	(ii)	What prop		ercentage increase = e figure calculated in part (i) c	

3 Examiner only On the grid below, plot the results using water at 40 $^\circ\text{C}$ and draw a suitable line. Use the mass of water absorbed by the bead to 1 decimal place. (b) (i) The results using water at 10 °C have already been plotted. [3] 10 9 8 Mass of water absorbed by bead (g) 7 6 5 4 3 3430UE01 03 2 1 С Ż 4 Ġ 8 10 12 14 Time (hours) Give two differences between the absorbing properties of the bead using water (ii) at 10 °C and at 40 °C. [2] Difference 1 Difference 2 7


[2] acid. loric [1]	
oric	
oric	
etween [1]	
	3430 U E 01 05
	30
	8
	[1] etween

				Examine	r
3.	(a)	The sodi	diagram shows the transfer of electrons that takes place during the formation of um oxide.	only	
			Na Na Na		
		(i)	Name the type of bonding present in sodium oxide.	[1]	
		(ii) 	State what must be done to sodium oxide so that it will conduct electricity. Explain your answer.	[2]	

7 Examiner only Draw a dot and cross diagram to show the bonding in a molecule of (b) (i) tetrafluoromethane, CF₄. [2] carbon (C) 2,4 fluorine (F) 2,7 3430UE01 07 Tetrafluoromethane is a simple covalent substance and is a gas at room (ii) temperature. Explain why it has a low boiling point. [2]

3430UE01 09

Examiner only When a mixture of iron(III) oxide and aluminium powder is heated, the following reaction 4. (a) takes place. iron(III) oxide + aluminium ----- iron + aluminium oxide The reaction is commonly called the thermite reaction. The photographs show the reaction taking place and how it is used in the repair of railway lines. Explain why iron is formed during the reaction. [2] (i) Complete and balance the equation for the reaction. (ii) [2] Fe₂O₃ + 2AI Calculate the percentage by mass of iron in iron(III) oxide, Fe₂O₃. (iii) [2] $A_{\rm r}({\rm Fe}) = 56$ $A_{\rm r}({\rm O}) = 16$ Percentage = %

Examiner

only Clare and Frankie were investigating the reactivity of metals. They carried out a series of displacement reactions in a dropping tile. In each test they placed a small piece of (b) metal into a solution of the nitrate of a different metal as shown. copper tin iron zinc zinc nitrate solution iron(II) nitrate solution tin nitrate solution copper(II) nitrate solution dropping tile It was not necessary to carry out all of the tests. Place crosses (X) on the diagram (i) to show which tests did not need to be carried out. Explain your choice. [2]

Examiner only

> 3430UE01 11

[3]

(ii) The equation shows the reaction between iron and copper(II) nitrate solution.

2Fe + $3Cu(NO_3)_2 \longrightarrow 2Fe(NO_3)_3 + 3Cu$

Use the equation to calculate the maximum mass of copper that you would expect to be formed when 0.224 g of iron is added to excess copper(II) nitrate solution.

 $A_{\rm r}({\rm Fe}) = 56$ $A_{\rm r}({\rm Cu}) = 63.5$

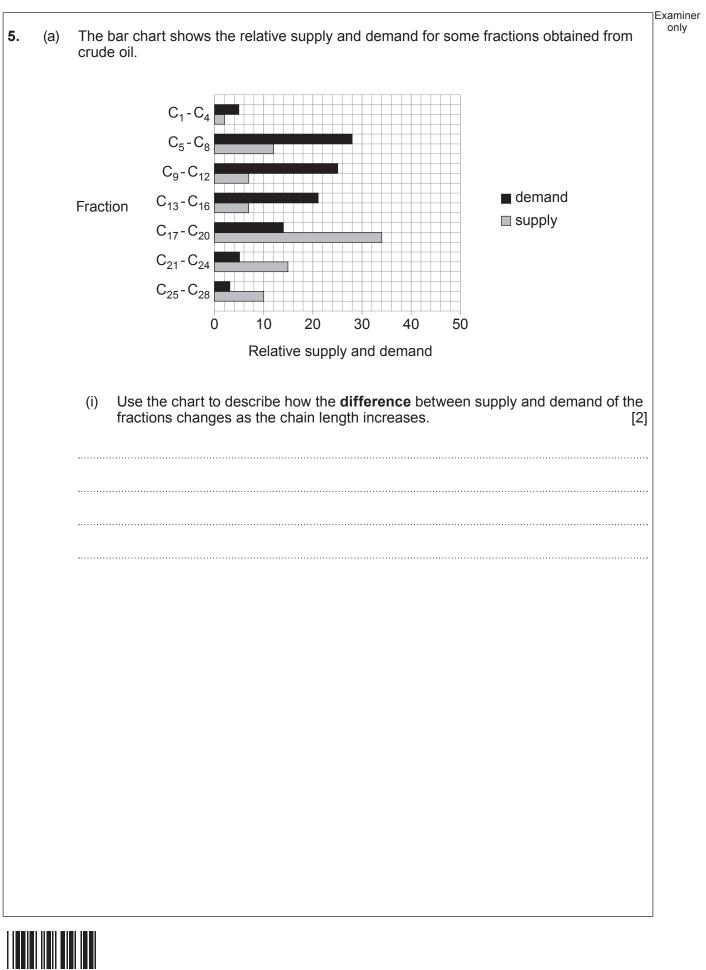
Maximum mass of copper = g

Examiner only

15

(C)		photograph shows how the electrolysis of zinc chloride can be carried out in the ratory.	9	U
	(i)	Balance the equation that represents the reaction taking place at the anode.		
		Use the equation to explain the meaning of the term oxidation.	[2]	

		$CI^- \longrightarrow CI_2 + e^-$	
(ii)		following method can be used to calculate the mass of zinc produced during process. Record the mass of the cathode before placing it into the electrolyte Allow the process to run to completion Remove the cathode from the electrolyte and record its new mass Calculate the increase in mass It is often found that the increase in mass measured using this method is greater than expected. Suggest a reason for this. [1]	
	II.	Suggest why this method cannot be used to measure the mass of chlorine produced during the process. [1]	



BLANK PAGE

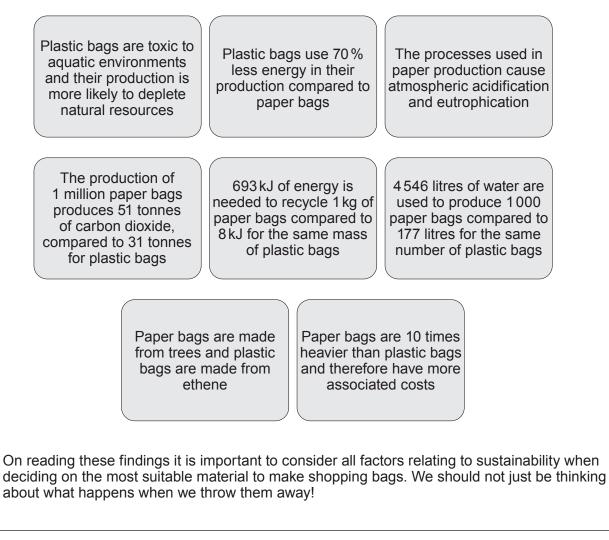
PLEASE DO NOT WRITE ON THIS PAGE

14

		some fractions.	y of
		I. State what is meant by <i>cracking</i> and give the conditions needed for the process.	[2]
		 II. When hydrocarbon X is cracked, it forms hexene, ethene and butane. Give the molecular formula of hydrocarbon X to complete the equation. 	[1]
		$\longrightarrow C_6H_{12} + 2C_2H_4 + C_4H_{10}$ hydrocarbon X hexene ethene butane	
(b)	C ₄ H ₇ (i)	₁₀ has two isomers. Give the meaning of the term <i>isomers</i> .	[1]
	(ii)	Draw the structures of both isomers of C_4H_{10} .	[2]
	(ii)	Draw the structures of both isomers of C ₄ H ₁₀ .	[2]
	(ii)	Draw the structures of both isomers of C ₄ H ₁₀ .	[2]
	(ii)	Draw the structures of both isomers of C ₄ H ₁₀ .	[2]

6. It is well known that plastic bags are a major source of litter. These bags can exist for a very long time, ranging from tens of years in the natural environment up to a thousand years in landfill.

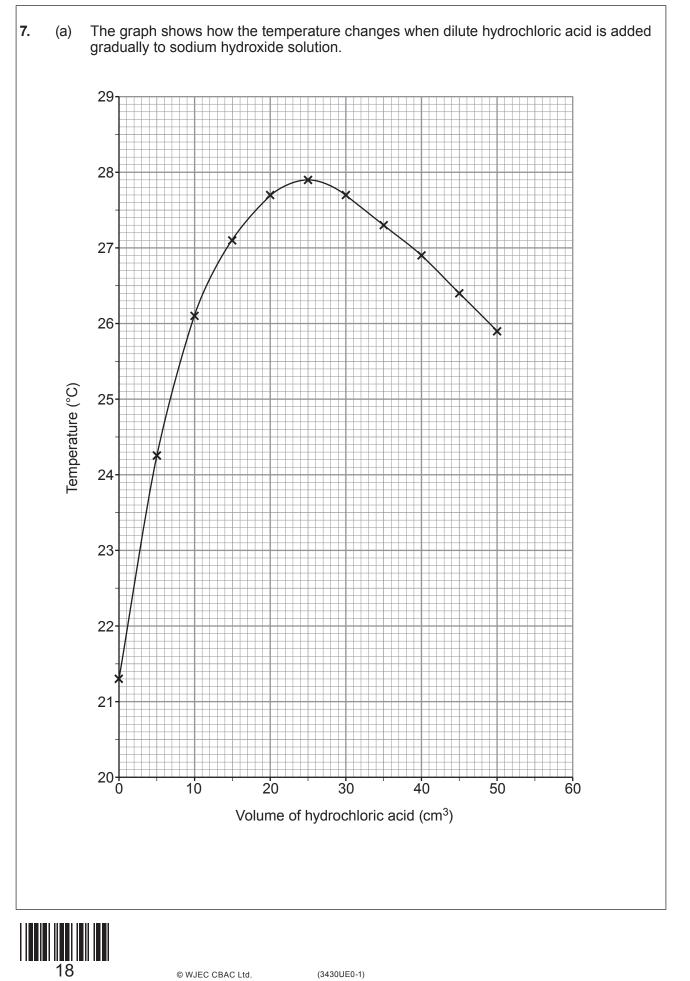
The use of plastic bags is now banned in some countries. These countries commonly use bags made from paper or cotton, which do not cause the same litter problem as plastic bags.



Paper or plastic?

Most people assume that a paper bag is better for the environment, however because paper bags are almost ten times heavier than plastic bags, they produce a greater mass of waste. On the other hand, because paper bags are biodegradable they do not lead to the same problem with litter as plastic bags.

When deciding whether paper is more suitable than plastic for making shopping bags, information from life cycle assessments (LCAs) of both materials must be taken into consideration.


Some of the findings from LCAs of paper and plastic bags are shown below.

 (a) Use the information in the passage to compare the mass of waste and volume of litter generated from the use of plastic and paper bags. (b) Use the information from the LCAs to tick (/) whether each of the factors supports or opposes the use of paper bags in preference to plastic bags. Supports use of Opposes use of paper bags Impact of waste on marine life Water consumption in production Energy used in production Carbon footprint generated in production Energy used in recycling Cost of transporting waste (c) The use of which type of bag is more likely to be linked to the erosion of limestone buildings? 					
opposes the use of paper bags in preference to plastic bags. Supports use of paper bags Opposes use of paper bags Impact of waste on marine life	(a)			aste and volume of litte	er [2]
opposes the use of paper bags in preference to plastic bags. Supports use of paper bags Opposes use of paper bags Impact of waste on marine life					
paper bags paper bags Impact of waste on marine life	(b)			the factors supports of	r [3]
Water consumption in production Energy used in production Carbon footprint generated in production Energy used in recycling Cost of transporting waste (c) The use of which type of bag is more likely to be linked to the erosion of limestone buildings?					
Energy used in production Carbon footprint generated in production Energy used in recycling Cost of transporting waste (c) The use of which type of bag is more likely to be linked to the erosion of limestone buildings?		Impact of waste on marine life			
Carbon footprint generated in production		Water consumption in production			
Energy used in recycling		Energy used in production			
Cost of transporting waste		Carbon footprint generated in production			
(c) The use of which type of bag is more likely to be linked to the erosion of limestone buildings?		Energy used in recycling			
buildings?		Cost of transporting waste			
Give a reason for your answer.	(C)		y to be linked to the	erosion of limestone	
		Give a reason for your answer.			[1]
Type of bag		Type of bag			
Reason		Reason			

	The pH of the solution also changes as the hydrochloric acid is added to the sodium hydroxide.	
	Explain the temperature changes shown on the graph and relate these to the change pH during the reaction. You do not need to include equations in your answer. [6 QE	in R]
)	The reaction between hydrochloric acid and sodium hydroxide produces sodium chloride and water.	
	Give the ionic equation to show how water is formed during this reaction.	[1]
	END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		······
		·····
		·····

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2	2
2	J

Iuminium AI^{3^+} bromide Br^- ummonium NH_4^+ carbonate $CO_3^{2^-}$ varium Ba^{2^+} chloride CI^- varium Ca^{2^+} fluoride F^- varium Ca^{2^+} hydroxide OH^- varium Cu^{2^+} hydroxide OH^- varium Cu^{2^+} nitrate NO_3^- varium Fe^{2^+} nitrate NO_3^- varium Li^+ sulfate $SO_4^{2^-}$ varium Mg^{2^+} sulfate $SO_4^{2^-}$ varium K^+ Ag^+ Ag^+ varium Na^+ Ag^+ Ag^+	Aluminium Al^{3+} bromide Br^- ammonium NH_4^+ carbonate CO_3^{2-} barium Ba^{2+} chloride Cl^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} nagnesium Mg^{2+} sulfate SO_4^{2-} ootassium K^+ silver Ag^+ sodium Na^+	POSITIV	EIONS	NEGATI	VE IONS	
Immonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- balcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- bydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ nagnesium Mg^{2^+} hi²+nickel Ni^{2^+} Ni^+	ammonium NH_4^+ carbonate CO_3^{2-} barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} nagnesium Mg^{2+} Ni^{2+} sulfate SO_4^{2-} ootassium K^+ Ag^+ Na^+	Name Formula		Name	Formula	
parium Ba^{2^+} chloride CI^- salcium Ca^{2^+} fluoride F^- sopper(II) Cu^{2^+} hydroxide OH^- bydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ itckel Ni^{2^+} K^+ ickel Ni^{2^+} ootassium K^+ Ag^+ K^+ idver Ag^+ Na^+ K^+	barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Iff the term of term$	aluminium	Al ³⁺	bromide	Br ⁻	
parium Ba^{2^+} chloride CI^- salcium Ca^{2^+} fluoride F^- sopper(II) Cu^{2^+} hydroxide OH^- bydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ itckel Ni^{2^+} K^+ ickel Ni^{2^+} ootassium K^+ Ag^+ K^+ idver Ag^+ Na^+ K^+	barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} nagnesium Mg^{2+} Ni^{2+} $Iff the term of term$	ammonium	NH_4^+	carbonate	CO3 ²⁻	
copper(II)Cu2+hydroxideOH-bydrogenH*iodideI-ron(II)Fe2+nitrateNO3-ron(III)Fe3+oxideO2-ithiumLi*sulfateSO42-nagnesiumMg2+SUfateSO42-ickelNi2+K*SulfateSUfateootassiumK*Ag*SulfateSulfate	copper(II)Cu2+hydroxideOH-hydrogenH+iodideI-ron(II)Fe2+nitrateNO3-ron(III)Fe3+oxideO2-ithiumLi+sulfateSO42-magnesiumMg2+Ni2+If and a sulfatehickelNi2+K+If and a sulfateootassiumK+Ag+solumNa+If and a sulfate	parium	Ba ²⁺	chloride		
hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} inagnesium Mg^{2+} sulfate Fe^{3+} ickel Ni^{2+} Fe^{3+} Fe^{3+} ickel Ni^{2+} Fe^{3+} Fe^{3+} ickel Ni^{2+} Fe^{3+} Fe^{3+} ickel Ni^{2+} Fe^{3+} Fe^{3+} ickel Na^+ Fe^{3+} Fe^{3+}	hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} nagnesium Mg^{2+} hickel Ni^{2+} ootassium K^+ silver Ag^+ solum Na^+	calcium	Ca ²⁺	fluoride	F	
ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{-2-} nagnesium Mg^{2+} SO_4^{-2-} nickel Ni^{2+} ootassium K^+ silver Ag^+ ootium Na^+	ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{-2-} magnesium Mg^{2+} Ni^{2+} nickel Ni^{2+} Ag^+ solver Ag^+ solum Na^+	copper(II)	Cu ²⁺	hydroxide	OH-	
ron(III) Fe ³⁺ oxide O ²⁻ tithium Li ⁺ sulfate SO ₄ ²⁻ nagnesium Mg ²⁺ tickel Ni ²⁺ tootassium K ⁺ silver Ag ⁺ sodium Na ⁺	ron(III) Fe^{3+} oxide O^{2-} ithiumLi ⁺ sulfate SO_4^{2-} nagnesiumMg^{2+}nickelNi^{2+}ootassiumK^+silverAg^+sodiumNa^+	nydrogen		iodide	I-	
ron(III) Fe ³⁺ oxide O ²⁻ ithium Li ⁺ sulfate SO ₄ ²⁻ nagnesium Mg ²⁺ nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	ron(III)Fe ³⁺ oxideO ²⁻ ithiumLi ⁺ sulfateSO ₄ ²⁻ magnesiumMg ²⁺ sulfateSO ₄ ²⁻ nickelNi ²⁺ silverAg ⁺ silverAg ⁺ silverSodium	ron(II)	Fe ²⁺	nitrate	NO ₃ ⁻	
nagnesium Mg ²⁺ nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium Mg ²⁺ nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	ron(III)	Fe ³⁺	oxide	O ²⁻	
nagnesium Mg ²⁺ nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium Mg ²⁺ nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	ithium		sulfate	SO4 ²⁻	
nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ oodium Na ⁺	nickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	nagnesium	Mg ²⁺			
ilver Ag ⁺ odium Na ⁺	silver Ag ⁺ sodium Na ⁺	nickel	Ni ²⁺			
odium Na ⁺	sodium Na ⁺	ootassium	K ⁺			
		silver	Ag ⁺			
inc Zn ²⁺	zinc Zn ²⁺	sodium	Na ⁺			
		zinc	Zn ²⁺			

24

relative atomic mass

atomic number

Symbol Name Z

								1
	0	⁴ Helium	20 Neon 10		84 Kr Krypton 36	131 Xe 54	222 Rn Radon 86	
	~		19 Fluorine 9	35.5 CI Chlorine 17	80 Br 35	127 lodine 53	210 At Astatine 85	
	9			32 S Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
	2		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
	4		12 C Carbon 6	28 Si 14	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead 82	
	က		11 B 5 5	27 Al Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
)					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
						103 Rh Rhodium 45		
•	Group	L]		56 Fe Iron 26	101 Ru Ruthenium 44	190 Osmium 76	Key
•	Gro	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
					52 Or Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74	
						93 Nb Niobium 41		
					48 Ti 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
	2		9 Be 4	24 Mg 12	40 Ca Calcium 20	88 St rontium 38	137 Ba Barium 56	226 Ra Radium 88
	-		7 Li Lithium 3	23 Na Sodium	39 A Potassium 19	86 Rb Rubidium 37	133 CS Caesium 55	223 Fr B7 87

THE PERIODIC TABLE

